吃奶呻吟打开双腿做受动态图 -亚洲色偷偷色噜噜狠狠99网-日韩精品极品视频在线观看免费-来一水AV@lysav

掃碼關(guān)注公眾號           掃碼咨詢技術(shù)支持           掃碼咨詢技術(shù)服務(wù)
  
客服熱線:400-901-9800  客服QQ:4009019800  技術(shù)答疑  技術(shù)支持  質(zhì)量反饋  人才招聘  關(guān)于我們  聯(lián)系我們
亚洲国产精品无码,亚洲欧美日本韩国
首頁 > 產(chǎn)品中心 > 一抗 > 產(chǎn)品信息
Rabbit Anti-Insulin Receptor alpha  antibody (bs-0047R)  
~~~促銷代碼KT202411~~~
訂購熱線:400-901-9800
訂購郵箱:sales@xucheq.com
訂購QQ:  400-901-9800
技術(shù)支持:techsupport@xucheq.com
說明書: 50ul  100ul  200ul
50ul/1180.00元
100ul/1980.00元
200ul/2800.00元
大包裝/詢價(jià)

產(chǎn)品編號 bs-0047R
英文名稱 Rabbit Anti-Insulin Receptor alpha  antibody
中文名稱 胰島素受體α抗體
別    名 CD 220; CD220; CD220 antigen; HHF 5; HHF5; INSR; IR; 4932439J01Rik; ALPHA SUBUNIT INSULIN RECEPTOR; D630014A15Rik; INSULIN RECEPTOR; INSULIN RECEPTOR KINASE; INSULIN RPTK; IR ALPHA; IRK; INSR_HUMAN.  
Specific References  (1)     |     bs-0047R has been referenced in 1 publications.
[IF=4.414] Lin IC et al. High?fructose?diet?induces?early?mortality?via?autophagy?factors?accumulation?in the?rostralventrolateral?medulla?as?ameliorated?by?pioglitazone. J Nutr Biochem. 2019 Apr 8;69:87-97.  WB ;  Rat.  
研究領(lǐng)域 心血管  細(xì)胞生物  神經(jīng)生物學(xué)  信號轉(zhuǎn)導(dǎo)  生長因子和激素  激酶和磷酸酶  糖尿病  新陳代謝  
抗體來源 Rabbit
克隆類型 Polyclonal
交叉反應(yīng) Human,Rat (predicted: Mouse,Rabbit,Pig,Sheep,Cow,Chicken,Dog,Horse)
產(chǎn)品應(yīng)用 WB=1:500-2000,IHC-P=1:100-500,IHC-F=1:100-500,Flow-Cyt=0.2μg/Test,IF=1:100-500
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
細(xì)胞定位 細(xì)胞膜 
性    狀 Liquid
濃    度 1mg/ml
免 疫 原 KLH conjugated synthetic peptide derived from human Insulin Receptor alpha: 701-760/1382 
亞    型 IgG
純化方法 affinity purified by Protein A
緩 沖 液 0.01M TBS (pH7.4) with 1% BSA, 0.02% Proclin300 and 50% Glycerol.
保存條件 Shipped at 4℃. Store at -20℃ for one year. Avoid repeated freeze/thaw cycles.
注意事項(xiàng) This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.
PubMed PubMed
產(chǎn)品介紹 The human insulin receptor is a heterotetrameric membrane glycoprotein consisting of disulfide linked subunits in a beta-alpha-alpha-beta configuration. The beta subunit (95 kDa) possesses a single transmembrane domain, whereas the alpha subunit (135 kDa) is completely extracellular. The insulin receptor exhibits receptor tyrosine kinase (RTK) activity. RTKs are single pass transmembrane receptors that possess intrinsic cytoplasmic enzymatic activity, catalyzing the transfer of the gamma phosphate of ATP to tyrosine residues in protein substrates. RTKs are essential components of signal transduction pathways that affect cell proliferation, differentiation, migration and metabolism.
Included in this large protein family are the insulin receptor and the receptors for growth factors such as epidermal growth factor, fibroblast growth factor and vascular endothelial growth factor. Receptor activation occurs through ligand binding, which facilitates receptor dimerization and autophosphorylation of specific tyrosine residues in the cytoplasmic portion. The interaction of insulin with the alpha subunit of the insulin receptor activates the protein tyrosine kinase of the beta subunit, which then undergoes an autophosphorylation that increases its tyrosine kinase activity. Three adapter proteins, IRS1, IRS2 and Shc, become phosphorylated on tyrosine residues following insulin receptor activation. These three phosphorylated proteins then interact with SH2 domain containing signaling proteins.

Function:
Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosines residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lead to the activation of two main signaling pathways: the PI3K-AKT/PKB pathway, which is responsible for most of the metabolic actions of insulin, and the Ras-MAPK pathway, which regulates expression of some genes and cooperates with the PI3K pathway to control cell growth and differentiation. Binding of the SH2 domains of PI3K to phosphotyrosines on IRS1 leads to the activation of PI3K and the generation of phosphatidylinositol-(3, 4, 5)-triphosphate (PIP3), a lipid second messenger, which activates several PIP3-dependent serine/threonine kinases, such as PDPK1 and subsequently AKT/PKB. The net effect of this pathway is to produce a translocation of the glucose transporter SLC2A4/GLUT4 from cytoplasmic vesicles to the cell membrane to facilitate glucose transport. Moreover, upon insulin stimulation, activated AKT/PKB is responsible for: anti-apoptotic effect of insulin by inducing phosphorylation of BAD; regulates the expression of gluconeogenic and lipogenic enzymes by controlling the activity of the winged helix or forkhead (FOX) class of transcription factors. Another pathway regulated by PI3K-AKT/PKB activation is mTORC1 signaling pathway which regulates cell growth and metabolism and integrates signals from insulin. AKT mediates insulin-stimulated protein synthesis by phosphorylating TSC2 thereby activating mTORC1 pathway. The Ras/RAF/MAP2K/MAPK pathway is mainly involved in mediating cell growth, survival and cellular differentiation of insulin. Phosphorylated IRS1 recruits GRB2/SOS complex, which triggers the activation of the Ras/RAF/MAP2K/MAPK pathway. In addition to binding insulin, the insulin receptor can bind insulin-like growth factors (IGFI and IGFII). Isoform Short has a higher affinity for IGFII binding. When present in a hybrid receptor with IGF1R, binds IGF1. PubMed:12138094 shows that hybrid receptors composed of IGF1R and INSR isoform Long are activated with a high affinity by IGF1, with low affinity by IGF2 and not significantly activated by insulin, and that hybrid receptors composed of IGF1R and INSR isoform Short are activated by IGF1, IGF2 and insulin. In contrast, PubMed:16831875 shows that hybrid receptors composed of IGF1R and INSR isoform Long and hybrid receptors composed of IGF1R and INSR isoform Short have similar binding characteristics, both bind IGF1 and have a low affinity for insulin.

Subunit:
Tetramer of 2 alpha and 2 beta chains linked by disulfide bonds. The alpha chains contribute to the formation of the ligand-binding domain, while the beta chains carry the kinase domain. Forms a hybrid receptor with IGF1R, the hybrid is a tetramer consisting of 1 alpha chain and 1 beta chain of INSR and 1 alpha chain and 1 beta chain of IGF1R. Interacts with SORBS1 but dissociates from it following insulin stimulation. Binds SH2B2. Activated form of INSR interacts (via Tyr-999) with the PTB/PID domains of IRS1 and SHC1. The sequences surrounding the phosphorylated NPXY motif contribute differentially to either IRS1 or SHC1 recognition. Interacts (via tyrosines in the C-terminus) with IRS2 (via PTB domain and 591-786 AA); the 591-786 would be the primary anchor of IRS2 to INSR while the PTB domain would have a stabilizing action on the interaction with INSR. Interacts with the SH2 domains of the 85 kDa regulatory subunit of PI3K (PIK3R1) in vitro, when autophosphorylated on tyrosine residues. Interacts with SOCS7. Interacts (via the phosphorylated Tyr-999), with SOCS3. Interacts (via the phosphorylated Tyr-1185, Tyr-1189, Tyr-1190) with SOCS1. Interacts with CAV2 (tyrosine-phosphorylated form); the interaction is increased with 'Tyr-27'phosphorylation of CAV2 (By similarity). Interacts with ARRB2 (By similarity). Interacts with GRB10; this interaction blocks the association between IRS1/IRS2 and INSR, significantly reduces insulin-stimulated tyrosine phosphorylation of IRS1 and IRS2 and thus decreases insulin signaling. Interacts with GRB7 (By similarity). Interacts with PDPK1. Interacts (via Tyr-1190) with GRB14 (via BPS domain); this interaction protects the tyrosines in the activation loop from dephosphorylation, but promotes dephosphorylation of Tyr-999, this results in decreased interaction with, and phosphorylation of, IRS1. Interacts (via subunit alpha) with ENPP1 (via 485-599 AA); this interaction blocks autophosphorylation. Interacts with PTPRE; this interaction is dependent of Tyr-1185, Tyr-1189 and Tyr-1190 of the INSR. Interacts with STAT5B (via SH2 domain). Interacts with PTPRF.

Subcellular Location:
Membrane; Single-pass type I membrane protein.

Tissue Specificity:
Isoform Long and isoform Short are predominantly expressed in tissue targets of insulin metabolic effects: liver, adipose tissue and skeletal muscle but are also expressed in the peripheral nerve, kidney, pulmonary alveoli, pancreatic acini, placenta vascular endothelium, fibroblasts, monocytes, granulocytes, erythrocytes and skin. Isoform Short is preferentially expressed in fetal cells such as fetal fibroblasts, muscle, liver and kidney. Found as a hybrid receptor with IGF1R in muscle, heart, kidney, adipose tissue, skeletal muscle, hepatoma, fibroblasts, spleen and placenta (at protein level). Overexpressed in several tumors, including breast, colon, lung, ovary, and thyroid carcinomas.

Post-translational modifications:
After being transported from the endoplasmic reticulum to the Golgi apparatus, the single glycosylated precursor is further glycosylated and then cleaved, followed by its transport to the plasma membrane.
Autophosphorylated on tyrosine residues in response to insulin. Phosphorylation of Tyr-999 is required for IRS1-, SHC1-, and STAT5B-binding. Dephosphorylated by PTPRE on Tyr-999, Tyr-1185, Tyr-1189 and Tyr-1190 residues. Dephosphorylated by PTPRF.

DISEASE:
Defects in INSR are the cause of Rabson-Mendenhall syndrome (RMS) [MIM:262190]; also known as Mendenhall syndrome. RMS is a severe insulin resistance syndrome characterized by insulin-resistant diabetes mellitus with pineal hyperplasia and somatic abnormalities. Typical features include coarse, senile-appearing facies, dental and skin abnormalities, abdominal distension, and phallic enlargement. Inheritance is autosomal recessive.
Defects in INSR are the cause of leprechaunism (LEPRCH) [MIM:246200]; also known as Donohue syndrome. Leprechaunism represents the most severe form of insulin resistance syndrome, characterized by intrauterine and postnatal growth retardation and death in early infancy. Inheritance is autosomal recessive.
Defects in INSR may be associated with noninsulin-dependent diabetes mellitus (NIDDM) [MIM:125853]; also known as diabetes mellitus type 2.
Defects in INSR are the cause of familial hyperinsulinemic hypoglycemia type 5 (HHF5) [MIM:609968]. Familial hyperinsulinemic hypoglycemia [MIM:256450], also referred to as congenital hyperinsulinism, nesidioblastosis, or persistent hyperinsulinemic hypoglycemia of infancy (PPHI), is the most common cause of persistent hypoglycemia in infancy and is due to defective negative feedback regulation of insulin secretion by low glucose levels.
Defects in INSR are the cause of insulin-resistant diabetes mellitus with acanthosis nigricans type A (IRAN type A) [MIM:610549]. This syndrome is characterized by the association of severe insulin resistance (manifested by marked hyperinsulinemia and a failure to respond to exogenous insulin) with the skin lesion acanthosis nigricans and ovarian hyperandrogenism in adolescent female subjects. Women frequently present with hirsutism, acne, amenorrhea or oligomenorrhea, and virilization. This syndrome is different from the type B that has been demonstrated to be secondary to the presence of circulating autoantibodies against the insulin receptor.

Similarity:
Belongs to the protein kinase superfamily. Tyr protein kinase family. Insulin receptor subfamily.
Contains 3 fibronectin type-III domains.
Contains 1 protein kinase domain.

SWISS:
P06213

Gene ID:
3643

Database links:

Entrez Gene: 3643 Human

Entrez Gene: 16337 Mouse

Entrez Gene: 24954 Rat

Entrez Gene: 484990 Dog

Omim: 147670 Human

SwissProt: P06213 Human

SwissProt: P15208 Mouse

SwissProt: P15127 Rat

Unigene: 465744 Human

Unigene: 9876 Rat




產(chǎn)品圖片
Sample: Lane 1: MCF-7 (Human) Cell Lysate at 30 ug Lane 2: Jurkat (Human) Cell Lysate at 30 ug Lane 3: SW480 (Human) Cell Lysate at 30 ug Lane 4: LOVO (Human) Cell Lysate at 30 ug Primary: Anti-Insulin Receptor alpha (bs-0047R) at 1/500 dilution Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution Predicted band size: 120 kD Observed band size: 120 kD
Sample: Lane 1: MCF-7 (Human) Cell Lysate at 30 ug Lane 2: MOLT-4 (Human) Cell Lysate at 30 ug Primary: Anti-Insulin Receptor alpha (bs-0047R) at 1/1000 dilution Secondary: IRDye800CW Goat Anti-Rabbit IgG at 1/20000 dilution Predicted band size: 120 kD Observed band size: 120 kD
Paraformaldehyde-fixed, paraffin embedded (human colon carcinoma); Antigen retrieval by boiling in sodium citrate buffer (pH6.0) for 15min; Block endogenous peroxidase by 3% hydrogen peroxide for 20 minutes; Blocking buffer (normal goat serum) at 37°C for 30min; Antibody incubation with (Insulin Receptor alpha) Polyclonal Antibody, Unconjugated (bs-0047R) at 1:400 overnight at 4°C, followed by operating according to SP Kit(Rabbit) (sp-0023) instructionsand DAB staining.
Tissue/cell: rat tongue tissue; 4% Paraformaldehyde-fixed and paraffin-embedded; Antigen retrieval: citrate buffer ( 0.01M, pH 6.0 ), Boiling bathing for 15min; Block endogenous peroxidase by 3% Hydrogen peroxide for 30min; Blocking buffer (normal goat serum,C-0005) at 37℃ for 20 min; Incubation: Anti- Insulin Receptor alpha Polyclonal Antibody, Unconjugated(bs-0047R) 1:200, overnight at 4°C, followed by conjugation to the secondary antibody(SP-0023) and DAB(C-0010) staining
Blank control (blue line): HL60(blue). Primary Antibody (green line): Rabbit Anti-Insulin Receptor alpha antibody (bs-0047R) Dilution: 0.2μg /10^6 cells; Isotype Control Antibody (orange line): Rabbit IgG . Secondary Antibody (white blue line): Goat anti-rabbit IgG-PE Dilution: 1μg /test. Protocol The cells were fixed with 70% ethanol Overnight at 4℃. Cells stained with Primary Antibody for 30 min at room temperature. The cells were then incubated in 1 X PBS/2%BSA/10% goat serum to block non-specific protein-protein interactions followed by the antibody for 15 min at room temperature. The secondary antibody used for 40 min at room temperature. Acquisition of 20,000 events was performed.
版權(quán)所有 2004-2026 www.xucheq.com 北京博奧森生物技術(shù)有限公司
通過國際質(zhì)量管理體系ISO 9001:2015 GB/T 19001-2016    證書編號: 00124Q34771R2M/1100
通過國際醫(yī)療器械-質(zhì)量管理體系ISO 13485:2016 GB/T 42061-2022    證書編號: CQC24QY10047R0M/1100
京ICP備05066980號-1         京公網(wǎng)安備110107000727號
帅小伙自慰VIDEOGAY男男 | 国产特黄A片AAAA毛片| 亚洲欧美激情精品一区二区 | 免费国产又色又爽又黄的网站| 国产精品99久久久久久人| 少妇被多人C夜夜爽爽AV| 人妻含泪让粗大挺进| 亚洲精品无码久久毛片| 国产乱子伦精品无码专区| 精品国产一区二区三区免费| 久久久久久亚洲AV无码专区 | 自W到高C的25种方法带图| 99久久人妻精品免费一区| 国产乱人对白A片麻豆| 娇妻借朋友高H繁交H| 亚洲色偷偷综合亚洲AV78| 中文字幕一区二区三区乱码| 男女做爰吃奶猛烈叫床视频电影| 国产成人精品一区二区三区无码 | 日本a√在线观看| 日韩无码专区| 性高湖久久久久久久久AAAAA | 久久99精品久久久久久琪琪| 小蜜被两老头吸奶头在线观看| 蜜臀AV性久久久久蜜臀AⅤ| 人人妻人人爽人人做夜欢视频 | 无码人妻AⅤ一区二区三区| 日本强好片久久久久久AAA| 射精视频| 欧美乱大交XXXXX| 日本55丰满熟妇厨房伦| 免费A级毛片黄A片高清在线播放| AV无码精品一区二区三区| 少妇扒开腿让我爽了一夜| 又湿又紧又大又爽A视频| 99精品亚洲AV无码国产另类| 边做奶水边喷H高H共妻| 国产特级毛片A片WWW| 少妇久久久久久被弄到高潮| 少妇人妻偷人精品无码视频| 久久精品中文字幕|