吃奶呻吟打开双腿做受动态图 -亚洲色偷偷色噜噜狠狠99网-日韩精品极品视频在线观看免费-来一水AV@lysav

掃碼關(guān)注公眾號(hào)           掃碼咨詢技術(shù)支持           掃碼咨詢技術(shù)服務(wù)
  
客服熱線:400-901-9800  客服QQ:4009019800  技術(shù)答疑  技術(shù)支持  質(zhì)量反饋  人才招聘  關(guān)于我們  聯(lián)系我們
亚洲18色成人网站WWW,国精品人妻无码一区二区三区牛牛
Rabbit Anti-KRAS/Biotin Conjugated antibody (bs-1033R-Bio)
訂購(gòu)熱線:400-901-9800
訂購(gòu)郵箱:sales@xucheq.com
訂購(gòu)QQ:  400-901-9800
技術(shù)支持:techsupport@xucheq.com
說 明 書: 100ul  
100ul/2980.00元
大包裝/詢價(jià)
產(chǎn)品編號(hào) bs-1033R-Bio
英文名稱1 Rabbit Anti-KRAS/Biotin Conjugated antibody
中文名稱 生物素標(biāo)記的原癌基因K-ras抗體
別    名 C-K-RAS; c-Ki-ras; c-Ki-ras p21; Ha-ras; K-RAS B; K-RAS2A; K-RAS2B; K-RAS4A; KI-RAS; KI-RAS4B; KRAS; KRAS1; KRAS2; MGC7141; NS; NS3; p21; p21B; p21ras; RAS; RAS1; RASH; RASK2.   
規(guī)格價(jià)格 100ul/2980元 購(gòu)買        大包裝/詢價(jià)
說 明 書 100ul  
研究領(lǐng)域 腫瘤  細(xì)胞生物  免疫學(xué)  信號(hào)轉(zhuǎn)導(dǎo)  細(xì)胞凋亡  細(xì)胞膜受體  轉(zhuǎn)運(yùn)蛋白  
抗體來源 Rabbit
克隆類型 Polyclonal
交叉反應(yīng) Human, Mouse, Rat, 
產(chǎn)品應(yīng)用 WB=1:50-200 ELISA=1:100-1000 IHC-P=1:50-200 IHC-F=1:50-200 IF=1:50-200 
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量 21kDa
性    狀 Lyophilized or Liquid
濃    度 1mg/ml
免 疫 原 KLH conjugated synthetic peptide derived from human K-ras
亞    型 IgG
純化方法 affinity purified by Protein A
儲(chǔ) 存 液 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
保存條件 Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C.
產(chǎn)品介紹 background:
This gene, a Kirsten ras oncogene homolog from the mammalian ras gene family, encodes a protein that is a member of the small GTPase superfamily. A single amino acid substitution is responsible for an activating mutation. The transforming protein that results is implicated in various malignancies, including lung adenocarcinoma, mucinous adenoma, ductal carcinoma of the pancreas and colorectal carcinoma. Alternative splicing leads to variants encoding two isoforms that differ in the C-terminal region. [provided by RefSeq]

Ras, a proto-oncogene, is a small G-protein that has 3 primary isoforms (H-Ras, N-Ras, and K-Ras) that differ in there approximately 20 C-terminal amino acids. H-Ras was first discovered as a transforming product the retrovirus Harvey murine virus and K-Ras of Kirten sarcoma virus. Ras is a heavily studied target of both academic and pharmaceutical research because of its implications in various pathways and diseases as well as being mutated in a large number of human cancers. Ras is most notably the activator of the Erk/MAPK kinase pathway as activator of Raf, as well as an activator of PI3 Kinase (PI3K). In its oncogenic, mutated state, Ras is unable to hydrolyze GTP to GDP, thus staying in an active state and activating numerous pathways including the MAPK pathway through its activation of Raf, but also others as well that include PI3 Kinase and RalGDS. One path that the pharmaceutical industry has taken to control Ras and its activity is by finding what some consider its Achilles’ heel. For its activation, Ras must localize to the plasma membrane, but interestingly, it lacks a transmembrane domain. To achieve this, Ras must first undergo a post-translational modification (PTM) known as prenylation or geranylation at its C-terminal CAAX motif. For this to take place, a controlled three step process must occur. The first step in the process is the prenylation or geranylation of the C in the CAAX motif that is initiated by the covalent attachment of farnesyl groups to the cysteine that is catalyzed by the . After this modification, the and heterodimer enzymes farnesyl transferases –aaX of the motif is proteolytically removed via Rce1 (Ras Converting Enzyme 1), a membrane associated endoprotease, by a mechanism that is still not fully understood. Finally, the C-terminal prenylcysteine is now methlylated by ICMT (Isoprenylcysteine Carboxymethyl Transferase). These drugs have yet to pass clinical trials though and there is doubt that they will ever be successful in treating tumors associated with Ras activation.

Function:
Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.

Subunit:
In its GTP-bound form interacts with PLCE1. Interacts with TBC1D10C. Interacts with RGL3. Interacts with HSPD1. Found in a complex with at least BRAF, HRAS1, MAP2K1, MAPK3 and RGS14. Interacts (active GTP-bound form) with RGS14 (via RBD 1 domain). Forms a signaling complex with RASGRP1 and DGKZ. Interacts with RASSF5. Interacts with PDE6D. Interacts with IKZF3. Interacts with GNB2L1.

Subcellular Location:
Cell membrane. Cell membrane; Lipid-anchor; Cytoplasmic side. Golgi apparatus. Golgi apparatus membrane; Lipid-anchor. Isoform 2: Nucleus. Cytoplasm. Cytoplasm, perinuclear region.

Tissue Specificity:
Widely expressed.

DISEASE:
Defects in KRAS are a cause of acute myelogenous leukemia (AML) [MIM:601626]. AML is a malignant disease in which hematopoietic precursors are arrested in an early stage of development. Defects in KRAS are a cause of juvenile myelomonocytic leukemia (JMML) [MIM:607785]. JMML is a pediatric myelodysplastic syndrome that constitutes approximately 30% of childhood cases of myelodysplastic syndrome (MDS) and 2% of leukemia. It is characterized by leukocytosis with tissue infiltration and in vitro hypersensitivity of myeloid progenitors to granulocyte-macrophage colony stimulating factor. Defects in KRAS are the cause of Noonan syndrome type 3 (NS3) [MIM:609942]. Noonan syndrome (NS) [MIM:163950] is a disorder characterized by dysmorphic facial features, short stature, hypertelorism, cardiac anomalies, deafness, motor delay, and a bleeding diathesis. It is a genetically heterogeneous and relatively common syndrome, with an estimated incidence of 1 in 1000-2500 live births. Rarely, NS is associated with juvenile myelomonocytic leukemia (JMML). NS3 inheritance is autosomal dominant.
Defects in KRAS are a cause of gastric cancer (GASC) [MIM:613659]; also called gastric cancer intestinal or stomach cancer. Gastric cancer is a malignant disease which starts in the stomach, can spread to the esophagus or the small intestine, and can extend through the stomach wall to nearby lymph nodes and organs. It also can metastasize to other parts of the body. The term gastric cancer or gastric carcinoma refers to adenocarcinoma of the stomach that accounts for most of all gastric malignant tumors. Two main histologic types are recognized, diffuse type and intestinal type carcinomas. Diffuse tumors are poorly differentiated infiltrating lesions, resulting in thickening of the stomach. In contrast, intestinal tumors are usually exophytic, often ulcerating, and associated with intestinal metaplasia of the stomach, most often observed in sporadic disease.
Note=Defects in KRAS are a cause of pylocytic astrocytoma (PA). Pylocytic astrocytomas are neoplasms of the brain and spinal cord derived from glial cells which vary from histologically benign forms to highly anaplastic and malignant tumors.
Defects in KRAS are a cause of cardiofaciocutaneous syndrome (CFC syndrome) [MIM:115150]; also known as cardio-facio-cutaneous syndrome. CFC syndrome is characterized by a distinctive facial appearance, heart defects and mental retardation. Heart defects include pulmonic stenosis, atrial septal defects and hypertrophic cardiomyopathy. Some affected individuals present with ectodermal abnormalities such as sparse, friable hair, hyperkeratotic skin lesions and a generalized ichthyosis-like condition. Typical facial features are similar to Noonan syndrome. They include high forehead with bitemporal constriction, hypoplastic supraorbital ridges, downslanting palpebral fissures, a depressed nasal bridge, and posteriorly angulated ears with prominent helices. The inheritance of CFC syndrome is autosomal dominant. Note=KRAS mutations are involved in cancer development.

Similarity:
Belongs to the small GTPase superfamily. Ras family.

Database links:

Entrez Gene: 3845 Human

Entrez Gene: 16653 Mouse

Entrez Gene: 24525 Rat

Omim: 190070 Human

SwissProt: P01116 Human

SwissProt: P32883 Mouse

SwissProt: P08644 Rat

Unigene: 37003 Human

Unigene: 505033 Human

Unigene: 383182 Mouse

Unigene: 24554 Rat



Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.

K-ras癌變基因的表達(dá)產(chǎn)物Ras蛋白存在于多數(shù)腫瘤之中,目前是腫瘤研究較重要的蛋白之一。
版權(quán)所有 2004-2026 www.xucheq.com 北京博奧森生物技術(shù)有限公司
通過國(guó)際質(zhì)量管理體系ISO 9001:2015 GB/T 19001-2016    證書編號(hào): 00124Q34771R2M/1100
通過國(guó)際醫(yī)療器械-質(zhì)量管理體系ISO 13485:2016 GB/T 42061-2022    證書編號(hào): CQC24QY10047R0M/1100
京ICP備05066980號(hào)-1         京公網(wǎng)安備110107000727號(hào)
久久久久久久人妻无码中文字幕爆| 久久久国产精华液| 精品国模一区二区三区| 欧美日韩免费做爰大片人| А√最新版天堂资源在线| 激情都市| 国产精品V欧美精品V日韩精品| 玩弄放荡人妻少妇系列视频| 无码精品黑人一区二区三区| 国产AV人人夜夜澡人人爽麻豆| 又爆又大又粗又硬又黄的A片| 无码久久久久久久久| 色婷婷av一区二区三区| 精品白嫩BBWBBWBBW| 国产又色又爽又高潮免费| 影音先锋女人AV鲁色资源网久久 | 人妻AⅤ无码一区二区三区| 狠狠人妻久久久久久综合蜜桃| 夜月直播视频直播免费观看| 将军脔到她哭H粗话H| 真人性做爰直播| 欧洲熟妇色XXXX欧美老妇多毛| 日本动漫瀑乳H动漫啪啪免费| 熟妇人妻一区二区三区四区| 人妻少妇精品中文字幕AV蜜桃| 国产精品婷婷久久爽一下| 国产成人精品一区二三区| 亚洲av无码一区二区二三区| 国产重口老太和小伙A片| 亚洲AV永久无码精品三区在线| 亚洲色大成网站WWW久久九九| 日韩GAY小鲜肉啪啪18禁| SM女人捆绑调教网站A片软件| 后入内射国产一区二区| 精品人妻无码一区二区三区淑枝 | 国产又色又爽又黄又免费| 国产老妇伦国产熟女老妇视频| 99久久精品免费看国产| 欧美成人一区二区三区| 国产亚洲精品精品精品| 亚洲精品无码午夜福利中文字幕|