吃奶呻吟打开双腿做受动态图 -亚洲色偷偷色噜噜狠狠99网-日韩精品极品视频在线观看免费-来一水AV@lysav

掃碼關注公眾號           掃碼咨詢技術支持           掃碼咨詢技術服務
  
客服熱線:400-901-9800  客服QQ:4009019800  技術答疑  技術支持  質量反饋  人才招聘  關于我們  聯(lián)系我們
大又大又粗又硬又爽少妇毛片,特大黑人与亚洲娇小,国产精品视频一区
首頁 > 產品中心 > 標記一抗 > 產品信息
Rabbit Anti-beta-arrestin 1 + 2/AP Conjugated antibody (bs-0857R-AP)
訂購熱線:400-901-9800
訂購郵箱:sales@xucheq.com
訂購QQ:  400-901-9800
技術支持:techsupport@xucheq.com
說 明 書: 100ul  
100ul/2980.00元
大包裝/詢價
產品編號 bs-0857R-AP
英文名稱1 Rabbit Anti-beta-arrestin 1 + 2/AP Conjugated antibody
中文名稱 堿性磷酸酶(AP)標記的β-抑制蛋白1/2抗體
別    名 Beta arrestin 1; ARB 1; ARB1; ARR 1; ARR1; ARRB 1; ARRB1; Arrestin beta 1; ARRB1_HUMAN; Arrestin 2; Arrestin beta-1; Beta-arrestin-1; Beta-arrestin 2; Beta Arrestin 2; ARB 2; ARB2; ARR 2; ARR2; ARRB 2; ARRB2; ARRB2_HUMAN; Arrestin 3; Arrestin beta 2; Arrestin beta-2; BARR2; DKFZp686L0365; HGNC:712; Beta-arrestin-2.  
規(guī)格價格 100ul/2980元 購買        大包裝/詢價
說 明 書 100ul  
研究領域 神經生物學  信號轉導  生長因子和激素  激酶和磷酸酶  通道蛋白  細胞膜受體  G蛋白偶聯(lián)受體  
抗體來源 Rabbit
克隆類型 Polyclonal
交叉反應 Mouse,  (predicted: Human, Rat, Chicken, Dog, Pig, Cow, Horse, Rabbit, Guinea Pig, )
產品應用 WB=1:50-200 IHC-P=1:50-200 IHC-F=1:50-200 
not yet tested in other applications.
optimal dilutions/concentrations should be determined by the end user.
分 子 量 45kDa
性    狀 Lyophilized or Liquid
濃    度 1mg/ml
免 疫 原 KLH conjugated synthetic peptide derived from human Beta-arrestin 1
亞    型 IgG
純化方法 affinity purified by Protein A
儲 存 液 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol.
保存條件 Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C.
產品介紹 background:
Beta Arrestin 1 is a member of a family of proteins that are widely expressed but especially abundant in the central nervous system. Serving as an adaptor or scaffold molecule, beta Arrestin 1 is essential for mitogenic signaling. It mediates agonist dependent desensitization and internalization of G protein coupled receptors (GPCRs, e.g., beta 2 adrenergic receptor). After binding to their ligand and interacting with heterotrimeric G proteins, GPCRs are phosphorylated by G protein receptor kinases (GRKs) on serine residues. Beta Arrestin 1 has important roles in the cytoplasm and at the plasma membrane in the desensitization and internalization of G protein coupled receptors (GPCRs) and is increasingly appreciated to play an important role in the endocytosis and signaling of GPCRs. Beta Arrestin 1 in the cytosol is phosphorylated by ERK1 and 2 on serine 412 in a negative feedback mechanism and binds to the phosphorylated receptors at the plasma membrane. Serine 412 is then dephosphorylated and the GPCRs are internalized, leading to activation of the Ras, Raf, ERK1 and 2 signaling pathway.

Function:
Functions in regulating agonist-mediated G-protein coupled receptor (GPCR) signaling by mediating both receptor desensitization and resensitization processes. During homologous desensitization, beta-arrestins bind to the GPRK-phosphorylated receptor and sterically preclude its coupling to the cognate G-protein; the binding appears to require additional receptor determinants exposed only in the active receptor conformation. The beta-arrestins target many receptors for internalization by acting as endocytic adapters (CLASPs, clathrin-associated sorting proteins) and recruiting the GPRCs to the adapter protein 2 complex 2 (AP-2) in clathrin-coated pits (CCPs). However, the extent of beta-arrestin involvement appears to vary significantly depending on the receptor, agonist and cell type. Internalized arrestin-receptor complexes traffic to intracellular endosomes, where they remain uncoupled from G-proteins. Two different modes of arrestin-mediated internalization occur. Class A receptors, like ADRB2, OPRM1, ENDRA, D1AR and ADRA1B dissociate from beta-arrestin at or near the plasma membrane and undergo rapid recycling. Class B receptors, like AVPR2, AGTR1, NTSR1, TRHR and TACR1 internalize as a complex with arrestin and traffic with it to endosomal vesicles, presumably as desensitized receptors, for extended periods of time. Receptor resensitization then requires that receptor-bound arrestin is removed so that the receptor can be dephosphorylated and returned to the plasma membrane. Involved in internalization of P2RY4 and UTP-stimulated internalization of P2RY2. Involved in phosphorylation-dependent internalization of OPRD1 ands subsequent recycling. Involved in the degradation of cAMP by recruiting cAMP phosphodiesterases to ligand-activated receptors. Beta-arrestins function as multivalent adapter proteins that can switch the GPCR from a G-protein signaling mode that transmits short-lived signals from the plasma membrane via small molecule second messengers and ion channels to a beta-arrestin signaling mode that transmits a distinct set of signals that are initiated as the receptor internalizes and transits the intracellular compartment. Acts as signaling scaffold for MAPK pathways such as MAPK1/3 (ERK1/2). ERK1/2 activated by the beta-arrestin scaffold is largely excluded from the nucleus and confined to cytoplasmic locations such as endocytic vesicles, also called beta-arrestin signalosomes. Recruits c-Src/SRC to ADRB2 resulting in ERK activation. GPCRs for which the beta-arrestin-mediated signaling relies on both ARRB1 and ARRB2 (codependent regulation) include ADRB2, F2RL1 and PTH1R. For some GPCRs the beta-arrestin-mediated signaling relies on either ARRB1 or ARRB2 and is inhibited by the other respective beta-arrestin form (reciprocal regulation). Inhibits ERK1/2 signaling in AGTR1- and AVPR2-mediated activation (reciprocal regulation). Is required for SP-stimulated endocytosis of NK1R and recruits c-Src/SRC to internalized NK1R resulting in ERK1/2 activation, which is required for the antiapoptotic effects of SP. Is involved in proteinase-activated F2RL1-mediated ERK activity. Acts as signaling scaffold for the AKT1 pathway. Is involved in alpha-thrombin-stimulated AKT1 signaling. Is involved in IGF1-stimulated AKT1 signaling leading to increased protection from apoptosis. Involved in activation of the p38 MAPK signaling pathway and in actin bundle formation. Involved in F2RL1-mediated cytoskeletal rearrangement and chemotaxis. Involved in AGTR1-mediated stress fiber formation by acting together with GNAQ to activate RHOA. Appears to function as signaling scaffold involved in regulation of MIP-1-beta-stimulated CCR5-dependent chemotaxis. Involved in attenuation of NF-kappa-B-dependent transcription in response to GPCR or cytokine stimulation by interacting with and stabilizing CHUK. May serve as nuclear messenger for GPCRs. Involved in OPRD1-stimulated transcriptional regulation by translocating to CDKN1B and FOS promoter regions and recruiting EP300 resulting in acetylation of histone H4. Involved in regulation of LEF1 transcriptional activity via interaction with DVL1 and/or DVL2 Also involved in regulation of receptors other than GPCRs. Involved in Toll-like receptor and IL-1 receptor signaling through the interaction with TRAF6 which prevents TRAF6 autoubiquitination and oligomerization required for activation of NF-kappa-B and JUN. Binds phosphoinositides. Binds inositolhexakisphosphate (InsP6). Involved in IL8-mediated granule release in neutrophils.

Subunit:
Monomer. Homodimer. Homooligomer; the self-association is mediated by InsP6-binding. Heterooligomer with ARRB2; the association is mediated by InsP6-binding. Interacts with GPR143. Interacts with ADRB2 (phosphorylated). Interacts with CHRM2 (phosphorylated). Interacts with LHCGR. Interacts with CYTH2 and CASR. Interacts with AP2B1 (dephosphorylated at 'Tyr-737'); phosphorylation of AP2B1 at 'Tyr-737' disrupts the interaction. Interacts (dephosphorylated at Ser-412) with CLTC. Interacts with CCR2 and ADRBK1. Interacts with CRR5. Interacts with PTAFR (phosphorylated on serine residues). Interacts with CLTC and MAP2K3. Interacts with CREB1. Interacts with TRAF6. Interacts with IGF1R and MDM2. Interacts with C5AR1. Interacts with PDE4D. Interacts with SRC (via the SH3 domain and the protein kinase domain); the interaction is independent of the phosphorylation state of SRC C-terminus. Interacts with TACR1. Interacts with RAF1. Interacts with CHUK, IKBKB and MAP3K14. Interacts with DVL1; the interaction is enhanced by phosphorylation of DVL1. Interacts with DVL2; the interaction is enhanced by phosphorylation of DVL2. Interacts with IGF1R. Associates with MAP kinase p38. Part of a MAPK signaling complex consisting of TACR1, ARRB1, SRC, MAPK1 (activated) and MAPK3 (activated). Part of a MAPK signaling complex consisting of F2RL1, ARRB1, RAF1, MAPK1 (activated) and MAPK3 (activated) (By similarity). Interacts with MAP2K4/MKK4. Interacts with HCK and CXCR1 (phosphorylated).

Subcellular Location:
Cytoplasm. Nucleus. Cell membrane. Membrane, clathrin-coated pit (Probable). Cell projection, pseudopodium. Cytoplasmic vesicle. Note=Translocates to the plasma membrane and colocalizes with antagonist-stimulated GPCRs. The monomeric form is predominantly located in the nucleus. The oligomeric form is located in the cytoplasm. Translocates to the nucleus upon stimulation of OPRD1.

Post-translational modifications:
Constitutively phosphorylated at Ser-412 in the cytoplasm. At the plasma membrane, is rapidly dephosphorylated, a process that is required for clathrin binding and ADRB2 endocytosis but not for ADRB2 binding and desensitization. Once internalized, is rephosphorylated.
The ubiquitination status appears to regulate the formation and trafficking of beta-arrestin-GPCR complexes and signaling. Ubiquitination appears to occur GPCR-specific. Ubiquitinated by MDM2; the ubiquitination is required for rapid internalization of ADRB2. Deubiquitinated by USP33; the deubiquitination leads to a dissociation of the beta-arrestin-GPCR complex. Stimulation of a class A GPCR, such as ADRB2, induces transient ubiquitination and subsequently promotes association with USP33.

Similarity:
Belongs to the arrestin family.

Database links:

Entrez Gene: 281637 Cow

Entrez Gene: 408 Human

Entrez Gene: 109689 Mouse

Entrez Gene: 25387 Rat

Omim: 107940 Human

SwissProt: P17870 Cow

SwissProt: P49407 Human

SwissProt: Q8BWG8 Mouse

SwissProt: P29066 Rat

Unigene: 503284 Human

Unigene: 568928 Human

Unigene: 593557 Human

Unigene: 625320 Human

Unigene: 260193 Mouse

Unigene: 34876 Rat



Important Note:
This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications.

β抑制因子-1是調節(jié)CD4+T細胞存活和自身免疫性的關鍵因子,與促進T淋巴細胞存活和自身免疫發(fā)病相關。經研究發(fā)現β-arrestin不僅僅能阻斷蛋白合成,也能誘導蛋白合成,參與信號傳導。
對Arrestins家族的研究-探究β-arrestin在G蛋白偶聯(lián)受體信號傳導通路中的地位和作用,是當今生物學中信號傳導研究領域的熱門課題.
β抑制因子-1又稱“胰島素受體復合體”,近年來國內外科研人員對β-arrestin在II型糖尿病發(fā)生的研究機制方面有了新的突破,認為:β-arrestin缺少或下降可直接導致了胰島素耐受和II型糖尿病的發(fā)生。
β-arrestin1和β-arrestin2有高度的同源性。
版權所有 2004-2026 www.xucheq.com 北京博奧森生物技術有限公司
通過國際質量管理體系ISO 9001:2015 GB/T 19001-2016    證書編號: 00124Q34771R2M/1100
通過國際醫(yī)療器械-質量管理體系ISO 13485:2016 GB/T 42061-2022    證書編號: CQC24QY10047R0M/1100
京ICP備05066980號-1         京公網安備110107000727號
天天爽夜夜爽夜夜爽精品视频| 日本护士毛茸茸高潮| GOGOGO免费视频观看| 亚洲AV无码乱码在线观看性色| 中文在线最新版天堂| 国产性生交XXXXX免费| 亚洲熟妇无码久久精品| 又粗又黄又猛又爽大片免费| 极品少妇xxxx精品少妇偷拍| 久久久无码精品亚洲日韩啪啪网站 | 小箩莉末发育娇小性色XXXX| 欧美肥妇BWBWBWBXX| 成人做爰免费视频免费看| 久久久久99精品成人片试看| 久久久久女人精品毛片| 丰满少妇作爱视频免费观看| 亚洲熟妇色XXXXX欧美老妇Y| 日本高清视频www| 国产人久久人人人人爽| 国产免费视频| 日日噜噜噜夜夜爽爽狠狠| 荫蒂每天被男人添| 8AV国产精品爽爽ⅤA在线观看| 久久久久久AV无码免费网站| 久久精品国产亚洲AV成人| 人人人妻人人澡人人爽欧美一区| 成人亚洲区无码偷拍12P| 人妻丰满熟妇AⅤ无码区| 99这里只有精品| 精品无码久久久久久久久| 国产成A人亚洲精V品无码性色 | 亚洲精品99久久久久中文字幕| 全黄H全肉禁乱公| 麻豆人妻少妇精品无码专区| 亚洲中文字幕无码AV| 极品少妇被猛得白浆直流草莓视频| YY111111少妇无码理论片| 她快高潮时故意拔出来会怎么样| 免费视频网站| 黑人巨大精品欧美一区二区免费| 爆乳熟妇一区二区三区|